The Useful Daylight Illuminance Paradigm: A Replacement for Daylight Factors

John Mardaljevic* and Azza Nabil
Institute of Energy and Sustainable Development (IESD)
De Montfort University
The Gateway, Leicester LE1 9BH, UK
*E-mail: jm@dmu.ac.uk.
Tel: +44 (0) 116 257 7972
Fax: +44 (0) 116 257 7981

Abstract

The daylight factor persists as the dominant evaluation metric because of its simplicity rather than its capacity to describe reality. Defined as an illuminance ratio under the CIE overcast sky, the daylight factor is insensitive to both the prevailing local climate and the azimuth component of glazing orientation. The drive towards sustainable, low-energy buildings places increasing emphasis on detailed performance evaluation at the early design stage. Recent advances in lighting simulation techniques have demonstrated that reliable predictions of time-varying daylight illuminances founded on hourly climatic data is now attainable. These simulations predict hourly internal daylight illuminances for a full year using realistic representations for sun and sky conditions. Data from these simulations can be used to predict the performance of daylight responsive lighting controls. Of equal significance is the nature of the true daylighting performance of the space - this is “contained” in the time-series of absolute illuminance values. The processing and analysis of voluminous time-series data is currently the preserve of engineers/scientists. But might not architects and designers benefit from some characterisation of daylighting performance that is founded on a time-series of realistic daylight illuminance data? The recently formulated useful daylight illuminance (UDI) paradigm is a scheme to process annual time-series of illuminance data to give a concise characterisation of the true daylighting performance of a building. Achieved UDI is defined as the annual occurrence of daylight illuminances across the work plane where the illuminances are within the range 100lux to 2000lux. These limits are based on a survey of reports of occupant preferences and behaviour in daylit offices with user-operated shading devices. The degree to which UDI is not achieved because illuminances exceed the upper limit is indicative of the potential for occupant discomfort. The UDI paradigm also gives significance to those daylight illuminances below the typical design threshold (e.g. 500lux), but which are nevertheless known to be valued by occupants and which also have the potential to displace all or part of the electric lighting. The UDI paradigm preserves much of the interpretive simplicity of the familiar daylight factor approach. In contrast to daylight factors however, UDI is founded on absolute values of illuminance predicted under realistic skies generated from standard meteorological datasets. This paper describes the application of the UDI paradigm to assess both side-lit office spaces and a large open plan area with light-well.

Introduction

The exploitation of daylight is recognised as an effective means to reduce the artificial lighting requirements of non-domestic buildings. In practice however, daylight is a greatly under-exploited natural resource. Significant amongst the various reasons for this may be the lack of realism of the standard predictive method: the daylight factor approach. A new schema to assess daylighting potential was introduced by the authors in a recent paper [1]. Called Useful Daylight Illuminance (or UDI), the schema preserves much of the interpretive simplicity of the familiar daylight factor approach. Useful Daylight Illuminance however is determined from absolute values of time-varying daylight illumination for a period of a full year. This method of daylight illuminance modelling we call ‘climate-based’ since the (hourly) sun and sky conditions are founded on values from annual climate datasets (e.g. direct normal irradiance and global horizontal irradiance from TMY2 files). The idea of daylight autonomy has been used by others to evaluate the illuminance predictions from climate based analyses [2]. Daylight autonomy is a measure of how often (e.g. percentage of the working year) a minimum work plane illuminance threshold of 500 lux can be maintained by daylight

1 of 10
alone. In contrast, the UDI scheme is founded on a measure of how often in the year daylight illuminances within a range are achieved. Real daylight illuminances in buildings vary enormously, much more than is suggested by variations in predicted daylight factors. Notions of illuminance uniformity that are a legacy of the traditional daylight factor approach are therefore inapplicable for realistic, daylit conditions. Likewise, the notion of simply achieving a threshold illuminance (i.e. daylight autonomy) has restricted value for two reasons. Firstly, daylight autonomy fails to give significance to those daylight illuminances that are below the threshold (for example, 500 lux), but which are nevertheless known to be valued by occupants and also have the potential to displace all or part of the electric lighting. Secondly, daylight autonomy makes no account of the amount by which the threshold illuminance was exceeded at any particular instant. This is significant because high levels of daylight illuminance are known to be strongly associated with occupant discomfort. Thus, in contrast to daylight autonomy, the Useful Daylight Illuminance scheme incorporates factors that are indicative of the propensity of occurrence for occupant discomfort.

Useful Daylight Illuminances are defined as those illuminances that fall within the range 100 lux to 2000 lux. The range used to define the limits of Useful Daylight Illuminance is based on a comprehensive review of the latest data from field studies of occupant behaviour under daylit conditions. The UDI scheme is applied by determining the occurrence of daylight illuminances that:

1. Are within the range defined as useful (i.e. 100 lux to 2000 lux).
2. Fall short of the useful range (i.e. less than 100 lux).
3. Exceed the useful range (i.e. greater than 2000 lux).

Thus, only three metrics are used to characterise the hourly-varying daylight illuminances for an entire year at each of the calculation points. How this range was arrived at is described in the following section. Then follows the application of UDI to evaluate design variants for a large open-plan building with a central light-well.

2 Useful Daylight Illuminances

Real daylight illuminances across the workplane exhibit large variations both spatially and temporally. For example, daylight illuminances typically diminish rapidly with increasing distance from windows. Equally, daylight illuminances at a point can vary greatly from one moment to the next due to changing sun position and/or sky conditions. As noted, conceptions of illuminance uniformity that arise from using the standard overcast sky approach are inapplicable for realistic conditions where the contribution of direct sunlight results in large differences between the maximum and minimum daylight levels. Consequently, any proposed metric that is devised to take account of realistic time-varying daylight illuminances must, in some way, cater for the large range in naturally occurring daylight levels. This can best be achieved by relinquishing the notion of a threshold (or target) illuminance, i.e. 500 lux value. In place of a threshold value, we propose that a measure of the occurrence of a range of illuminances that can be said to constitute ‘useful’ levels of illumination provides a more informative metric. If the daylight illuminance is too small (i.e. below a minimum), it may not contribute in any useful manner to either the perception of the visual environment or in the carrying out of visual tasks. Conversely, if the daylight illuminance is too great (i.e., above a maximum), it may generate visual or thermal discomfort, or both. Illuminances that fall within the bounds of minimum and maximum are called here Useful Daylight Illuminances. The absolute values assigned to the minimum and maximum illuminance levels are based on a review of published work on occupant behaviour in daylit office environments under a wide range of illumination conditions. Space restrictions preclude a summary of the survey here (it is included in an expanded version of this paper that has been prepared for journal submission). The rationale for the UDI range limits determined from the survey is summarised as follows:

- Daylight illuminances less than 100 lux are generally considered insufficient either to be the sole source of illumination or to contribute significantly to artificial lighting.
Daylight illuminances in the range 100 lux to 500 lux are considered effective either as the sole source of illumination or in conjunction with artificial lighting.

Daylight illuminances in the range 500 lux to 2000 lux are often perceived either as desirable or at least tolerable.

Daylight illuminances higher than 2000 lux are likely to produce visual or thermal discomfort, or both.

Thus, it is proposed that any daylight illuminance in the range 100 lux to 2000 lux should be considered as offering potentially useful illumination for the occupants of the space. When evaluating predicted time-varying daylight illuminances on the workplane, useful daylight illuminance is said to occur whenever the illuminances at a calculation point fall within the range 100 lux to 2000 lux.

3 UDI modalities

The UDI scheme can be applied in different ways depending on the evaluation scenario. At present, two UDI modalities have been formulated. One is appropriate to perimeter spaces where the illumination is primarily from a glazing on the external facade. This modality can account for the effect of dynamic shading systems, e.g. user-operated blinds, electrochromic glazing, etc. The other modality is better suited to the whole-scale assessment of the daylighting provision across entire floor areas for buildings of arbitrary shape and complexity, e.g. buildings with light-wells, atria etc. Thus it is a measure of the intrinsic daylighting potential of the building form (morphology and context) and construction (glazing transmission, surface reflectances).

3.1 Cellular and perimeter spaces: Building form and operation

Side-lit cellular office spaces with vertical glazing are a common configuration in many buildings. For these spaces it is usual for the occupants to control the levels of illumination using shades or blinds. Here, the upper limit of what constitutes UDI (i.e. 2000 lux) can be used as the threshold value which, when exceeded, is likely to cause the occupants to deploy some shading device (e.g. lower the blinds). For these spaces, UDI was defined to have been achieved whenever all the illuminances across the core of the work plane (at any one instant) were in the range 100 to 2000 lux [1]. This condition is consistent with occupant behaviour for these spaces where any one of the occupants may experience discomfort and deploy the shades.

That paper also compared the sensitivity of daylight factors (DFs) to the sensitivity in UDI for all 504 combinations of: 14 climates; 12 window orientations; and, three glazing tints [1]. For that comparative evaluation of DFs and UDIs there was no blinds operation. The useful daylight illuminance showed a factor 27 variation across all the combinations of climate, orientation and tint. The daylight factor showed a variation of less than two since it was sensitive only to changes in the glazing tint. In other words, the daylight factor is markedly insensitive to the real factors that determine realistic measures of illuminance. It is perhaps not unreasonable to suggest that the daylight factor is telling us very little - if anything - about real daylight provision, except perhaps that bigger windows let in more daylight.

3.2 Open plan areas: Building form only

For large, open-plan spaces the condition that UDI is achieved simultaneously across the work plane is too restrictive. For these spaces, especially when they are deep-plan, illuminances will rarely be in the range 100 to 2000 lux across all the work plane at any one instant. For these scenarios, we propose that the occurrence of UDI achieved, exceeded and fell-short is determined for each point independently of the others. This UDI modality was used to evaluate three design variants for a large, open-plan building with a central light-well. The building model and the prediction of internal daylight illuminances are described in the next section.

4 The building model and illuminance prediction
A simple 3D model of a four-storey open-plan building with a central light-well was constructed using Radiance [3] scripts and surface generators. The building model had the dimensions shown in Figure 1. The reflectivities of the walls, ceiling, floor, and overhangs were set to be 0.5, 0.7, 0.3, and 0.7, respectively. The four facades had glazing 1.7 m high starting at a window sill height of 1 m from the floor. The glazed facades and the light-well were modelled as double glazing with transmittance of 0.74 (0.806 transmissivity) corresponding to a composition of 6 mm Kappafloat inner pane and 6 mm outer clear float [4].

![Figure 1. Building model and design variants](image)

4.1 The design variants
The three scenarios, comprising a basecase and two external shading variants, were as follows:

- **Basecase**: all four facades and light-well were unshaded, i.e., no overhangs included in the model, with the top of the light-well glazed and flush with the rest of the building roof, as shown in the top diagram of Figure 1.

- **Variant 1**: shading overhangs were added to the East, South, and West facades, where the thickness of the overhangs was 0.3m starting at the top of the glazing at 2.7m from the floor. The width of the overhangs was 1m extending at right angles to the building facades, as shown in the middle diagram of Figure 1. Overhangs were not deemed necessary on the North facade since only northern-hemisphere locales were considered in this study.

- **Variant 2**: in addition to the facade overhangs used for variant 1, a lantern was added to the top of the light-well. The height of the lantern was 1.7m. The sides were glazed, and an opaque roof with shading overhangs extending 2m on the East, South, and West sides was added, as shown in the bottom diagram of Figure 1.
One of the aims of this study is to demonstrate how the UDI metrics can be used to rapidly evaluate several design options. Accordingly, we have used a fairly simple building model for the purpose of demonstration. The illuminance modelling is described in the next section.

4.2 Prediction of daylight factors and time-varying illuminances
For the examination of UDI given in this paper, the authors present results for the ground floor only. This is sufficient to demonstrate the application and effectiveness of the UDI scheme. A grid of 900 calculation points (30 x 30) was evenly distributed across the workplane (height 0.8 m) on the ground floor. These points represent the locations of the ‘virtual photometers’ used in the simulation, i.e. illuminances were predicted at each of these points. The distance between the walls and the edge points in the grid was 0.5 m, and the distance between consecutive points in both directions was 1 m.

The CIE standard overcast sky luminance pattern was used to predict daylight factors at the 900 calculation points across the ground floor workplane for each of the three design variants. The standard Radiance illumination calculation was used.

For the climate-based analysis, where time-varying illuminances are predicted, the calculation method was based on Tregenza’s daylight coefficient (DC) approach [5]. Using the modified daylight coefficient scheme formulated and validated by Mardaljevic [6], and later refined by Nabil [7], daylight coefficients were computed for each of the 900 calculation points. Radiance was used as the ‘engine’ to predict the daylight coefficients. Next, using the horizontal irradiation data in the CIBSE Test Reference Year (TRY) for London (51.38N, 0.78W), hourly sky and sun conditions were derived for every daylight hour in the year (i.e. where the irradiation is greater than zero). The sky model mixing function described in Mardaljevic [8] was used to determine the hourly varying sky luminance patterns. The hourly internal illuminance was derived from the pre-computed daylight coefficients at each of the 900 points for each of the three scenarios. The total number of illuminance values computed was: 4356 (daylight hours) x 900 (points) x 3 (scenarios) = 11,761,200. These data were processed to determine the three UDI metrics and also measures of daylight autonomy. A discussion of the three daylight assessment techniques using illuminances founded on climate data for London (UK) is described in the next section.

5 Results
The intention here is to compare the evaluative potential of the three daylight assessment techniques (daylight factors, daylight autonomy and useful daylight illuminance) through an examination of their sensitivity to changes in the building design. Thus, the results for the three techniques applied to the three designs are presented in groups of three by three (i.e. nine) plots. Two sets of plots were generated. The first group are false-coloured surface plots (or ‘maps’) that show the variation in the predicted daylight metrics across the workplane. The second group are line plots that give the size of the daylight metric along an East-West line across the centre of the building. The results are discussed first individually and then all together.

5.1 Daylight factors (for anywhere and everywhere)
The predicted daylight factors across the workplane for the three design variants are shown in the first column (a) of Figure 2. The DF value is shown using colour (see the legend directly below the plots). The daylight factor along the dotted line running East-West is plotted as a curve in column (a) of Figure 3.

The symmetry of the false colour map for the basecase (unshaded) building (Figure 2, top of column (a)) results, of course, from the use of the standard overcast sky: daylight factors are, by definition, insensitive to the orientation of the building. It can be seen from the false colour maps and the line plots that daylight factors in the vicinity of all four facades, particularly in the corner areas, are much higher than deep inside the building. The addition of exterior overhangs on the East, South, and West facades of the building in variant 1 (Figure 2 and Figure 3, middle of column (a)), reduces the DFs 2m from facades to around 5.5%. The addition of a lantern with overhangs at the top of the light-well in
variant 2 (Figure 2 and Figure 3, bottom of column (a)) further decreases the DFs deep within the building so that the DFs never exceed 2%.

5.2 Daylight autonomy (London, UK)
Using the time-varying illuminances derived from the London climate file, daylight autonomy (DA) during the ‘working year’ (i.e. between the hours 09:00 - 18:00) was calculated at each of the 900 calculation points on the ground floor workplane. The DA results for the three variants are given alongside those for the daylight factors. That is, the false colour DA maps shown in column (b) of Figure 2, and the line plots in column (b) of Figure 3. Note that daylight autonomy and UDI are both expressed in terms of the percentage of the working year. Thus they share the same legend which is positioned between the two respective columns in Figure 2.

Reading from the false colour maps and line plots, DA (i.e. 500 lux or greater) is achieved more than 80% of the working year in the vicinity of all four facades (within 2 m of the glazing). This is especially so for the corners areas, and also within the central area of the ground floor directly beneath the light-well in the basecase. Similar to the DF results, DA decreases for points farther away from the glazed facade. However, unlike DFs, the pattern of illuminance in the four quadrants of the ground floor of the unshaded building in the base case is not symmetrical, with the North-East quadrant exhibiting the biggest drop in illuminance away from the windows. The shading of three facades with overhangs in variant 1 (middle of column (b) in Figure 2 and Figure 3) causes a noticeable reduction in DA. Shading from the lantern in variant 2 causes the DA in the central part of the ground floor to drop from about 85% to around 50% or less.

5.3 The UDI metrics (London, UK)
The same illuminance data used to determine daylight autonomy were re-processed to determine the occurrences in the working year when UDI was: achieved, exceeded and fell-short. This was done for predictions at each of the 900 calculation points on the workplane. To save space, only the false-colour maps for UDI achieved are given in Figure 2 (column (c)). However, the curves for the UDI exceed and fell-short metrics are given in the line plots Figure 3 (column (c)).

The false colour map of achieved UDI for the unshaded building (top of column (c) in Figure 2) shows minimum values around the perimeter of the building. It is evident from the corresponding line plot in Figure 3 that this is due largely to UDI being exceeded, and that this occurs for up to 60% of the working year. The same is true, albeit to a slightly lesser degree, for the central area under the light well.

For variant 1, the addition of overhangs on the three facades (middle of column (c) in Figure 2 and Figure 3) reduces the UDI exceedence in the perimeter areas. This is particularly so for the East and West facades where UDI is now achieved for more than 50% of the working year. Although the corner areas and the south facade also witness an improvement in UDI with the introduction of overhangs, it is to a lesser degree: UDI is achieved here for about 35-40% of the work year. The addition of a lantern with an opaque roof and overhangs (variant 2) improves the metric considerably for the central workplane area directly beneath it. UDI is now achieved for over 75% of the working year, and exceedances of UDI are greatly reduced.

5.4 A comparison of DFs, DA and UDI
The most striking feature of the plots across the top row of Figure 2 is the symmetry of the DF distribution alongside the asymmetry of the DA and UDI distributions. The DF, of course, is insensitive to the glazing orientation. However, the DF and DA plots share a similar character in the overall form of the distributions: highest values around the perimeter and under the lantern. The UDI distribution however follows a pattern that is almost the inverse of the DF or DA patterns: the UDI is a minimum around the perimeter and under the lantern.

Moving on now to variant 1 (shading on the East, West and South facades), there is a reduction in both the DF and the DA for the perimeter areas where shading was introduced. In contrast, the achieved UDI for these perimeter areas increases quite markedly (middle row of plots in Figure 2). It
can be seen in the respective line plots (Figure 3) that the increase in achieved UDI is due mostly to the reduced occurrence in UDI exceedances resulting from the introduced shading.

A similar change in the pattern of DA and UDI is noticed for the central region with the introduction of the lantern (with opaque top and shading overhangs). There is a marked reduction in DF and DA under the lantern, and a significant increase in UDI (bottom row of plots in Figure 2). Again, the line plots reveal that the increase in UDI is due to reduced exceedances (i.e. lower occurrence of illuminances greater than 2000 lux).

Figure 2. Area plots
To summarise, the highest level of daylight autonomy (and the highest daylight factors) are indicated for the basecase building without shading. The UDI exceedance plot for the basecase reveals that illuminances greater than 2000 lux are expected for around 60% and 40% of the working year for perimeter and central areas, respectively. Occupant studies suggest that these levels of illumination will produce discomfort for significant periods of the year. They are also likely to be indicative of high levels of solar gain. In contrast, the highest levels of UDI are achieved for the variant 2 design that has perimeter and lantern shading.
5.5 LEED, DFs and UDI

The Leadership in Energy and Environmental Design (LEED) scheme is promoted by the US Green Building Council to encourage, amongst other things, the design of low energy buildings. Daylight is one of the considerations in the determination of a LEED credit rating. The requirement for LEED credit 8.1 is phrased as follows: "Achieve a minimum Daylight Factor of 2% (excluding all direct sunlight penetration) in 75% of all space occupied for critical visual tasks" [9]. The note in parentheses that "all direct sunlight penetration" should be excluded is somewhat vague since LEED recommends a standard daylight factor calculation which, of course, makes no account of sunlight, direct or otherwise. Perhaps it is implied that designers should strive to eliminate "all direct sunlight penetration", but there seem to be no mandatory requirements to assess this. And indeed the LEED guidelines suggest the use of various "best practice" shading devices which implies that direct sun is expected at least some of the time.

The example used in this paper presents an interesting case when the LEED criteria are applied. Only the unshaded basecase building would attain the LEED credit for daylight: a DF of 2% is achieved across 81% of the floor area. With the addition of shading in variants 1 and 2, the 2% DF value is achieved across 72% and 64% of the floor area, respectively. In other words, the shading needed to lessen the propensity for high illuminances (with the associated discomfort and solar gains) would, for this building, cause it to fail to achieve the LEED daylight credit. This strongly suggests that the basis for the LEED daylight rating might warrant reconsideration, and that further comparison with climate-based analyses is advised.

Of the two UDI modalities, the one described in this paper is best suited to make comparison with LEED since, like the daylight factor, the occurrence of UDI across the workplane is dependent on the intrinsic form of the building rather than its operation. Unlike the daylight factor, of course, UDI has a foundation in real climate. In addition to providing a realistic measure of daylight provision, plots of UDI exceeded identify those areas where additional, perhaps user-operated, shading may be needed. The process of evaluation becomes considerably more difficult once user-operated shading devices enter the consideration because the deployment of additional shading can affect the levels of daylight provision across much of the space. However, it is reasonable to hope that a building design that minimises the occurrences of UDI exceeded is likely also to minimise the number of occasions when users deploy blinds. Thus it may be possible to devise a relatively simple, LEED-like scheme, based on the occurrences of UDI achieved and UDI exceeded, that offers:

- A realistic, climate-based measure of daylight.
- Zoning of the building in terms of overall daylight provision.
- Identification of the facades/areas where additional shading may be required.
- Some indication of the likelihood that user-operated shades (when present) will be deployed.
- A scheme to make easy comparison of competing design variants (i.e. based on maximising UDI achieved and/or minimising UDI exceeded).

6 Discussion

The UDI scheme is both informative and disarmingly simple. It is only marginally more complex than the daylight autonomy method, but it nevertheless gives a much greater insight into the spatio-temporal dynamics of daylight illumination. In particular, it gives an indication of the propensity for high levels of illumination that are associated with discomfort and solar gains. Key to this is the use of a range of illuminations that is founded on human factors, rather than the single threshold value which is designed specifically for energy calculations (i.e. daylight autonomy). Although UDI is based primarily on human factor considerations, high values of achieved UDI might well be associated with low energy usage for electric lighting, and possibly also for cooling. In the first UDI paper, we reported a strong anti-correlation between electric lighting usage and achieved UDI for cellular office spaces with user controlled shades [1]. That analysis employed the other UDI modality where, to achieve UDI at any one instant, each point in the work plane had to be within the UDI range (see
Section 3). UDI is a very recent concept, and further studies need to be carried out to determine if high levels of achieved UDI are indeed an indicator of low electric lighting usage for the majority of building scenarios. The implications for cooling requirements also need to be determined.

Fifty years since it was first proposed, the DF persists as the dominant evaluation metric because of its inherent simplicity rather than its realism. For the vast majority of practitioners, the consideration of any quantitative measure of daylight begins and ends with the daylight factor. Despite the evident lack of realism, practitioners have become accustomed to the daylight factor and various standards/criteria (e.g. LEED) are framed only in terms of daylight factors. There is little doubt that time-varying illuminance predictions, i.e. climate-based modelling, offer a far more realistic account of true daylighting conditions than the highly idealised daylight factor approach. The UDI scheme offers the means to communicate the significant characteristics of climate-based analyses in a concise and readily intelligible form. Furthermore, the UDI metrics provide a more informative and comprehensive assessment of daylight conditions than that which can be gained from daylight autonomy. Additionally, we envisage significant potential for UDI in the teaching of effective daylighting design principles. Students are currently taught that the assessment of daylight and solar penetration should be carried out using essentially incompatible methods: overcast sky for daylight and shadow patterns for solar penetration. The UDI approach provides a unified, holistic scheme to make simple, yet meaningful assessment of daylight and solar penetration together using realistic, climate-based conditions that are specific to the locale for the building. It is hoped that the UDI scheme will help to promote the wider use of climate-based modelling to assess daylight in buildings.

Acknowledgements

This work was carried out in support of the activities of IEA Task 31.

References

